前言
编写 CUDA 程序真心不是个简单的事儿,调试也不方便,很费时。那么有没有一些现成的 CUDA 库来调用呢?
答案是有的,如 CUBLAS 就是 CUDA 专门用来解决线性代数运算的库。
本文将大致介绍如何使用 CUBLAS 库,同时演示一个使用 CUBLAS 库进行矩阵乘法的例子。
CUBLAS 内容
CUBLAS 是 CUDA 专门用来解决线性代数运算的库,它分为三个级别:
Lev1. 向量相乘
Lev2. 矩阵乘向量
Lev3. 矩阵乘矩阵
同时该库还包含状态结构和一些功能函数。
CUBLAS 用法
大体分成以下几个步骤:
1. 定义 CUBLAS 库对象
2. 在显存中为待运算的数据以及需要存放结果的变量开辟显存空间。( cudaMalloc 函数实现 )
3. 将待运算的数据传输进显存。( cudaMemcpy,cublasSetVector 等函数实现 )
3. 调用 CUBLAS 库函数 ( 根据 CUBLAS 手册调用需要的函数 )
4. 从显存中获取结果变量。( cudaMemcpy,cublasGetVector 等函数实现 )
5. 释放申请的显存空间以及 CUBLAS 库对象。( cudaFree 及 cublasDestroy 函数实现 )
代码示例
如下程序使用 CUBLAS 库进行矩阵乘法运算,请仔细阅读注释,尤其是 API 的参数说明:
1 // CUDA runtime 库 + CUBLAS 库 2 #include "cuda_runtime.h" 3 #include "cublas_v2.h" 4 5 #include6 #include 7 8 using namespace std; 9 10 // 定义测试矩阵的维度 11 int const M = 5; 12 int const N = 10; 13 14 int main() 15 { 16 // 定义状态变量 17 cublasStatus_t status; 18 19 // 在 内存 中为将要计算的矩阵开辟空间 20 float *h_A = (float*)malloc (N*M*sizeof(float)); 21 float *h_B = (float*)malloc (N*M*sizeof(float)); 22 23 // 在 内存 中为将要存放运算结果的矩阵开辟空间 24 float *h_C = (float*)malloc (M*M*sizeof(float)); 25 26 // 为待运算矩阵的元素赋予 0-10 范围内的随机数 27 for (int i=0; i
运行测试
PS:矩阵元素是随机生成的
小结
1. 使用 CUDA 库固然方便,但也要仔细的参阅函数手册,其中每个参数的含义都要很清晰才不容易出错。
2. 如果程序仅使用 CUDA 库的话,用 .cpp 源码文件即可 (不用 .cu)